
INT. J. NUM. METH. HEAT FLUID FLOW, VOL. 2, 155-169 (1992) 

FINITE ELEMENT ANALYSIS OF STIRRING INDUCED BY 
AN ALTERNATING MAGNETIC FIELD 

M. BERELOWITZ AND P. BAR-YOSEPH 
Computational Mechanics Laboratory, Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, 

Haifa 32000, Israel 

ABSTRACT 
The numerical investigation into the stirring induced by an alternating magnetic field, applied in the axial 
direction of a closed axisymmetric container of conducting fluid, is presented. The interaction between the 
azimuthal current and magnetic field results in Lorentz forces in the meridional plane which induce the 
fluid flow. The magnetic Reynolds number is assumed to be smaller than the frequency magnetic Reynolds 
number. The electromagnetic equations are thus decoupled from the fluid flow equations. The 
electromagnetic field is first solved, and the body forces determined from this are introduced into the 
Navier-Stokes equations. With the flow field known, the quality of mixing is determined by solving the 
tracer dispersion equation. The finite element method based on a Galerkin formulation is used for the 
solution of the equations. Three cases are examined: a finite length cylinder, a finite length cylinder with 
rounded corners and a sphere. In general, two vortices are formed, the equatorial vortex closest to the 
equator and the end vortex at the closed end. Results show that the introduction of the rounded corner 
increases the size and strength of the end vortex with the opposite effect on the equatorial vortex. Of the 
three frequency magnetic Reynolds numbers considered (Rω=30, 100 and 800), Rω=100 results in the 
best mixing for all cases. Rounding the corner of the cylinder only results in a definite improvement of 
mixing at Rω=800. The sphere results in even better mixing than this at Rω=800, but is worse than the 
first two geometries for Rω=30 and 100 when the interaction parameter is large. 
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INTRODUCTION 

During the past decade there has been a growing interest in the improvement of ladle metallurgy 
for the finishing treatment of molten steel. Some form of ladle metallurgy step, such as argon 
stirring in order to achieve homogenization, has become an established component of the overall 
steel making sequence. 

In general, the operation of typical ladle metallurgy systems involves the agitation of melts 
that may range from 5 to 250 tons in size, using injected-gas streams, vacuum-driven circulation 
systems or electromagnetic force fields. In addition to homogenization, agitation also causes 
chemical and physical changes. For mixing problems in general, theoretical1-3, experimental1-4,7 

and numerical8 studies have been undertaken. For this, a variety of different schemes have been 
used in attempting to quantify the mixing of the resultant flow fields. 

For the stirring of conducting fluids by magnetic fields, various theoretical studies9-11 have 
been undertaken. These, however, have been rather limited due to the complicated nature of 
the equations. Experimental investigations have thus been crucial to gaining an understanding 
of the phenomena and processes involved7,12-17. Owing, to the inherent problems of experiments 
with liquid metals and with the onset of computing power, an increasing use is being made of 
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the mathematical modelling of these types of problems. With respect to the present problem, 
numerous works using the finite difference method have been undertaken8,12,14,16-19. While the 
finite element method has successfully been employed for other MHD problems20-22, to the 
best of our knowledge, it has not yet been used for the present type of problem. 

The studies on the stirring induced by alternating magnetic fields parallel to the axis of 
symmetry can be classified as follows: (i) the inclusion or exclusion of flow induced currents 
which renders the magnetic field equations and fluid flow equations coupled or uncoupled 
respectively; (ii) a finite length coil or a uniform external magnetic field of an infinite coil; (iii) 
an open or closed crucible, where the former can be considered to have a flat free surface or 
the cupola effect on the free surface can be determined; and (iv) laminar flow or turbulent flow, 
with various possible turbulent models. 

So while a fair amount of work has been done in this field, the only geometrical consideration 
other than length to radius ratio of the cylinder has been the determination of the cupola effect 
of the free surface. However, in practice the corner of the crucible is often rounded because of 
the severe erosion which occurs there. To the best of our knowledge, no previous work has been 
done on the above problem which employs the finite element method for the entire problem of 
magnetic field solution, flow determination and mixing. For this reason, the effect of geometry 
on the resultant flow and mixing has also not been investigated. It is to this problem of the 
effect of geometry on the mixing, that the present research addresses itself. 

THEORETICAL DEVELOPMENT 
The problem considered for study is the stirring induced in electrically conducting fluids by 
alternating magnetic fields. The effect of crucible geometry on the flow patterns and on the 
mixing which results from this, is investigated. Specifically, the study is confined to closed 
axisymmetric arbitrarily shaped containers. The magnetic field is derived from an infinite length 
coil wound around the container and the magnetic field at infinity is thus parallel to the axis 
of the container. The particular geometries chosen for investigation exhibit plane symmetry. 

Fluid equations 
The Navier-Stokes equations incorporating the electromagnetic body force are used. The flow 

can be assumed to be steady, laminar and isothermal18. Under these assumptions, the governing 
fluid equations in dimensionless form are: 

where R is the interaction parameter: 

VA1 is the Alfven speed of propagation of a magnetohydrodynamic wave: 

L is a characteristic length scale, B0 is the strength of the external applied magnetic field, μ is 
the magnetic permeability of free space, Va is the velocity vector normalized with respect to VA1, 
v is the kinematic viscosity, J is the current density, ρ is the fluid density, and B is the magnetic 
flux density. 
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The axisymmetric form of the fluid equations are used, i.e. polar coordinates (r,θ,z). For the 
problem under consideration, no body forces are present in the azimuthal direction, so the 
azimuthal velocity component is set to zero. 

Electromagnetic equations 
Maxwell's equations for magnetohydrodynamic flows together with Faraday's and Ohm's 

laws are used23. 
The magnetic vector potential A is defined by: 

The result of this is to transform the problem of solving for two non-zero scalar components of 
the magnetic field B to a problem of solving for a single non-zero scalar component of the 
magnetic vector potential A. Numerically, this has the advantage of reducing the number of 
degrees of freedom by half. 

As customary24, the following additional constraint is enforced: 

The dimensionless form of the magnetic vector potential equation can then be expressed as18,25: 

where Rω is the frequency magnetic Reynolds number 

where ω=2πf and f is the applied frequency of the alternating magnetic field, and Rm is the 
magnetic Reynolds number: 

where the velocity vector V is normalized with respect to V0, a typical velocity scale of the 
motion, time is normalized with respect to ω-1 and σ is the electrical conductivity of the fluid. 

Referring to (7), Rm is assumed to be much smaller than Rω, which means that the electric 
currents induced by the motion of the fluid particles across the lines of force (the term containing 
the Rm) will be negligible compared to the electric currents induced by the pulsation of the 
applied magnetic field (the term containing the Rω). Therefore, (7) reduces to: 

Thus, by limiting the study to Rω»Rm the electromagnetic equations are decoupled from the 
fluid equations. 

Assuming axisymmetry and the magnetic field applied parallel to the axis, the equations are 
expressed in polar coordinates (r,θ,z) so that (10) reduces to a single equation governing the 
one-component vector potential, i.e. 

If the applied magnetic field is a sinusoidal function of time, then a solution for A' of the form: 

where 



158 M. BERELOWITZ AND P. BAR-YOSEPH 

can be sought. The vector potential A is thus described by its real and imaginary parts a and 
b or by its phase Φ and amplitude Am, which are both functions of the coordinates (r, z). Equation 
(10) thus becomes, 

The boundary conditions are: 
The magnetic field is assumed to be uniform at infinity, and so Â≈r at infinity. In terms of 

a and b, this means that, on the axis, i.e. at r=0: a=0 and b=0 and at the boundary far from 
the conducting medium: a=r and b=0. 

The magnetic field must be continuous across the boundary. Thus (5) requires the derivatives 
of Â to be continuous across boundaries between different media. 

The body force term can be calculated from the solution of the magnetic vector potential 
solution for the Navier-Stokes equations. The body force term is given by: 

Moreau26 showed that the time-period variation of the force around the mean value has little 
hydrodynamical importance. Therefore, with the inertial response of the fluid to the periodic 
part of the Lorentz force neglected, the mean value of the force field over a period is used. The 
driving force is therefore defined as: 

where < > denotes the time average, and T=2π/ω. Once solved, the assumption that Rω»Rm 
can be checked. 

Dispersion of tracers 
With the fluid flow field is known, the dispersion of a tracer, which may be used to characterize 

the mixing rates, may be represented in dimensionless form as: 

where C is the tracer concentration, Pe is the Peclet number defined by: 

and a is the tracer diffusivity. 

FINITE ELEMENT FORMULATION 
To solve the Navier-Stokes equations, (1), we use the penalty method. The discrete weak 
formulation is then given as27: 

where (β,γ) denotes the usual [L2(Ω)]n, (n = l,2), inner product with β and γ denoting generic 
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scalar or vector functions, and 

are the bilinear and trilinear forms of the diffusive and convective terms, respectively and ε is a 
small positive number, the penalty parameter. 

Choosing the same finite element subspace as used for the velocity vectors in the fluid flow 
equations, the weak formulation of the magnetic vector potential is: 

The electromagnetic matrix equations which result from the formulation are linear while those 
of the fluid flow problem are non-linear due to the convective terms. 

For the flow problem, a solution by continuation-Newton algorithms is used to trace the 
branches in the parameter space along which steady flow states lie. In this study, a zeroth-order 
continuation (incremental 'loading') in R with step size control follow the solution branch from 
a given unique solution state. The interaction parameter R is incremented until a solution at 
the required interaction parameter is attained. The advantage of this technique is that solutions 
are available for a range of interaction parameters. At each continuation step, a non-linear 
equation set is solved by a Newton iteration and the approximation to the solution at each 
iteration is found by a modified frontal solver28, for an in-core solution of large, sparse, 
non-symmetric systems of the set of linearized equations. Iterations at each load step are 
performed until convergence is achieved. 

The penalty parameter ε was typically set to 10-6. The flow solutions obtained were found 
to vary insignificantly for variations in ε of several orders of magnitude. 

Quantifying mixing 
The tracer dispersion problem was solved by the classical standard Galerkin method29 used 

for convective-diffusive type problems. Explicit time integration, the Euler method, was used 
for the time marching procedure. Identical meshes as used for the flow equations were used for 
these as well, with biquadratic elements also employed. The solution obtained from the flow 
problem was supplied as the steady flow field for the tracer dispersion equation. At t=0, all the 
tracer was concentrated in a small area. Numerically this was done by setting the initial tracer 
concentration at all the nodes of one particular element to 1.0 and setting all the other nodes 
initially to zero. The boundary conditions were zero flux of tracer at all the boundaries. The 
value of Pe was set at 1000 to ensure the dominance of convectivity transport rate over diffusivity 
transport rate of tracer. Constant steps of one dimensionless unit of time were used for the 
numerical time stepping procedure.- This was checked with smaller time steps and the solutions 
of the quality of mixing were found to deviate insignificantly from these. In all cases the problems 
were run for 100 dimensionless units of time and then a mixing index (MI) was calculated from 
the resultant tracer distribution to quantify the mixing. The MI we define as the integral over 
the volume of the deviation of the tracer concentration from the average tracer concentration 
normalized with respect to the total tracer quantity, i.e. 
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where 

and V(Ω) is the volume of the domain. 

Geometrical model 
The following three geometries were considered for investigation of the mixing problem: 
(1) a cylinder with radius and half length equal to 1.0; 
(2) a cylinder the same as the one above but with a rounded corner. The radius of curvature 

of the corner was 0.3; 
(3) a sphere of radius 1.0. While a closed spherical container is almost certainly not a 

technologically practical geometry, it represents the extreme extrapolation of rounding 
the corner of the above cylinders. 

In all three cases, the containers were closed and thus exhibited plane symmetry about the 
equatorial plane. The magnetic field from an infinite length coil was applied. The computational 
boundaries were set at r=0,2 and z=0,3 in all the cases. A representative example of this type 
of problem with the magnetic vector potential boundary conditions and with the fluid flow 
boundary conditions is shown schematically in Figure 1. 

In all cases, biquadratic isoparametric elements were used for the electromagnetic field problem 
as well as for the flow problem. For the magnetic field problem, the part of the mesh representing 
the conducting fluid was identical to the mesh of the fluid flow problem. This facilitated the 
transfer of the body force solution from the electromagnetic problem to the flow problem. 

Figure 2 shows the meshes corresponding to the fluid flow field for the three cases considered. 
The elements marked A correspond to the elements which were given the initial tracer 
concentration for the tracer dispersion problem. Other elements were also used for the initial 
location of tracer concentration in order to investigate the effect of this on the resultant 
determination of the mixing index. 
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RESULTS AND DISCUSSION 
Magnetic field around an infinitely long cylinder 

A comparison between the numerical solution and the exact solution25 of the magnetic field 
around an infinitely long cylinder is shown in Figure 3. The cylinder has a radius of 1.0 and the 
external magnetic field is specified at a radius of 2.0. The numerical solution was obtained using 
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20 equal bilinear elements in the radial direction with zero derivatives imposed in the axial 
direction. As can be seen, the numerical results are in excellent agreement with the exact solution. 
As expected, the deviation from the exact solution is largest at the largest value of Rω where 
the skin depth is the smallest. 

Three geometries considered 
For each of the three different geometries, the computations were performed for three different 

value of Rω, viz., Rω=30, 100 and 800. The changes which occur for increasing Rω are as 
expected from previous researchers18. The depth of penetration of the lines of equal a become 
smaller for larger Rω and the medium change is highly noticeable in the solution of b, viz. as 
Rω increases the gradients of b become shallower everywhere except in the vicinity of the medium 
change. Typical results which show the influence of the different geometries on the solutions of 
a and b are shown in Figure 4. The force fields computed from the solutions also follow the 
known trend, i.e., as Rω increases the magnitude of the maximum force increases and the force 
field becomes concentrated in the thin skin layer. 

A comparison of the magnetic vector potential solution versus the radius r at the equator for 
the cylinder and sphere to the exact solution for an infinite cylinder of radius 1.0 with the same 
external applied magnetic field is shown in Figures 5 and 6. Figure 5 is for the case of Rω=30 
and Figure 6 is for Rω = 800. As can be seen the deviation is greatest for the sphere as one would 
expect, and is greater for smaller Rω, which could be a result of the greater penetration depth 
and hence effected to a greater extent by the geometry. 

Figure 7 shows the resulting flow streamlines for Rω=800 and R=1600 for the cylinder with 
the rounded corner. As can be seen two toroidal vortices are present. The vortex closest to the 
plane of symmetry at the equator, the equatorial vortex, rotates clockwise. The other vortex, 
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the end vortex, rotates counter-clockwise. Figure 8 shows the flow streamlines for the same 
geometry but with Rω=100 and R = 1600 while the result for Rω=800 and R= 200 is shown in 
Figure 9. From these we can see the trends found for the resulting flows with respect to changes 
in the parameters Rω and R which are in agreement with those of previous researchers13,16,18 

viz., as R or Rω increase, the equatorial vortex grows in size at the expense of the end vortex. 
The effect of changes in geometry can be seen by comparing Figures 7, 10 and 11 which show 

the resulting streamlines for Rω=800 and R= 1600 for the three geometries considered. In the 
sphere, with only one vortex present, that vortex is analogous to the end vortices of the other 
two geometries. A comparison of the maximum value of the stream function of the end vortices 
for the various geometries and operating parameters is shown in Table I. 

In comparing the flow results, it can be seen that the maximum value of the streamfunction 
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Table I Comparison of the maximum streamfunction value of the end vortex for the different cases and parameters 

R 

200 
400 
800 

1197 
1560 
1600 
3140 

Cylinder Rω 

30 

0.069 
0.10 
0.15 

0.16 

100 

0.036 
0053 
0.089 

0.109 

800 

0.015 
0.016 
0.023 

0.031 

Rounded corner Rω 

30 

0.102 
0.158 
0.219 

0.227 

100 

0.079 
0.126 
0.19 

0.22 

800 

0.030 
0.051 
0.080 

0.105 

Sphere Rω 

30 

0.143 
0.215 
0.214 

0.224 

100 

0.101 
0.17 
0.2 
0.18 

800 

0.021 
0.041 
0.080 

0.136 
0.188 

Table 2 Comparison of the maximum absolute stream function value of the equatorial vortex for the cylinder and the 
cylinder with the rounded corner 

R 

200 
400 
800 

1600 

Cylinder Rω 

30 

-0 .06 
-0 .10 
-0 .15 
-0 .15 

100 

-0 .10 
-0 .17 
-0 .22 
-0 .24 

800 

-0 .04 
-0 .09 
-0 .14 
-0 .19 

Cylinder with rounded corner Rω 

30 

-0 .04 
-0.08 
-0 .14 
-0 .13 

100 

-0 .09 
-0 .15 
-0.21 
-0 .24 

800 

-0 .03 
-0 .06 
-0 .11 
-0 .17 

of the end vortex decreases as Rω increases and increases for greater rounding of the corner 
(except in the sphere for high value of R). 

For the equatorial vortex, a different phenomenon is present. Here, the vortex has a maximum 
absolute streamfunction value for Rω=100 but decreases with the rounding of the corner. Typical 
values are shown in Table 2 which gives the values of the stream function of the eye of the 
equatorial vortex for the cylinder and the cylinder with the rounded corner. 

Regarding the solution strategy, a typical run was as follows: for the cylinder with the sharp 
corner, the magnetic vector potential was solved for Rω=100. The flow equations were then 
solved by incremental loading of R. The Stokes equations were solved for the first iteration of 
the first value of R. Thereafter, the Newton-Raphson scheme was used for solving the equations. 
When convergence was attained, R was incremented. For this particular parameter set, increments 
of 100 up to R=800 were possible, with the typical quadratic convergence associated with the 
scheme obtained. Thereafter, increments as small as 20 were necessary, but at R=1700 increments 
of 100 were once again possible up to R=2300. 

The convergence characteristics of the scheme were also found to be mesh dependent. With 
the converged solution at the highest value of R obtained, increments of as little as 1 could not 
yield the next solution. Non-convergence could have several meanings. It could be that a higher 
order continuation method is necessary due to a bifurcation of the solution. Alternatively, it 
could simply be a manifestation of the non-existence of a steady or laminar solution. 

A comparison of the geometrical effect on the maximum velocity, Vmax=max( 
obtained in the flow field for fixed values of Rω and R is shown in Figure 12. As can be seen in 
the first graph, for Rω=30, the sphere has the highest Vmax while the cylinder has the lowest. 
At Rω=100, the cylinder has the lowest Vmax, but the rounded corner cylinder has the greatest 
Vmax and at Rω=800, the sphere has the lowest Vmax with the rounded corner cylinder having 
the greatest for R>900. The results thus show a clear influence of geometry on the maximum 
velocity and flow field and demonstrate the ability of being able to choose between geometry, 
Rω and R to obtain the most appropriate flow for given criteria. 
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Table 3 Comparison of the logarithm of the mixing index for the various parameters and geometries considered 

R 

100 
800 

1197 
1560 
1600 

Sharp 
corner 

-1 .78 
-2 .46 

-2 .66 

Rω=30 

Round 
corner 

-1 .71 
-2 .45 

-3 .26 

Sphere 

-3 .75 
-2 .29 

-0 .55 

Sharp 
corner 

-3 .26 
-3 .36 

-4 .34 

Rω=100 

Round 
corner 

-2 .55 
-3 .74 

-4 .18 

Sphere 

-4 .06 
-3 .74 
-3 .16 

Sharp 
corner 

-2 .14 
-2 .86 

-2 .74 

Rω=800 

Round 
corner 

-2 .90 
-3 .34 

-3 .05 

Sphere 

-2 .45 
-4 .36 

-3 .63 

Since Rω/Rm = ωL/V0 we can choose Vmax for V0 to yield a minimum of this ratio. Now, since 
Vmax is always of the order unity, the initial assumption that Rω»Rm can readily be enforced 
by choosing ωL»1. 

To investigate the mixing of the resultant flow, the tracer dispersion problem was solved for 
various combinations of Rω and R. The results are shown in Table 3. At Rω=30, the sphere 
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is best at low R but worst at high R. For Rω=100 the sphere is again best at low R and worst 
at high R. However, for Rω=800, the sphere is markedly better than the other two for R large. 
One can also see that while the MI's for the cylinder and the cylinder with a rounded corner 
are similar at Rω=30 and 100, at Rω=800 the rounded corner cylinder gains a distinct edge 
over the plain cylinder. 

CONCLUSIONS 
The finite element method has successfully been used to model the stirring induced by an 
alternating magnetic field. The quality of stirring from the resulting flow has also been examined. 

The results from the flow in a closed cylindrical crucible with sharp corners and of a closed 
cylindrical crucible with rounded corners show the following distinct trends: (1) regarding the 
Lorentz force, the maximum force decreases with increasing corner radius; (2) regarding sizes 
of vortices, the end vortex decreases in size for increasing R, the end vortex decreases in size for 
increasing Rω and the end vortex increases in size for greater corner radius; (3) regarding 
strengths of vortices (maximum absolute value of stream function), both vortices increase in 
strength for increasing R, the end vortex decreases in strength for increasing Rω, the equatorial 
vortex reaches a maximum strength for increasing Rω and then decreases in strength, the end 
vortex increases in strength for greater corner radius and the equatorial vortex decreases in 
strength for greater corner radius. 

The non-geometrical trends noted here are in total agreement with those of previous 
workers13,16,18. 

In examining the mixing which results from the various cases considered, Rω=100 gives better 
mixing than the other values of Rω for the cylinder with sharp corners and the cylinder with a 
rounded corner. This could be related to the fact that the equatorial vortex has a greater strength 
at Rω=100 and being the larger in size it thus dominates in the determination of the mixing 
index. The rounding of the corner of the cylinder only gives a definite improvement of mixing 
at Rω=800 despite the fact that the equatorial vortex is weaker. 

In similar work to this, where quantifying mixing has been attempted, the norm seems to be 
to define a mixing time which is usually defined to be the time taken for the concentration at 
a given location to continuously fall within 5% of the final, well mixed concentration7,8. 
Naturally, it is preferable to look at the entire field as opposed to one particular location, but 
the latter approach is more readily applicable to experimental work. In numerical work it is 
obviously very easy to look at the entire field as has been done in this work. We could thus 
have compared mixing times by defining this as the time taken for the mixing index to drop 
below say 0.01 or some other suitable value. 

However, the problem of in which element to concentrate the tracer initially still remains an 
open question. We found that Rω=30 gave the smallest deviation in the mixing index for different 
initial locations of the tracer for all the values of R investigated. For Rω=100 and 800, the 
mixing index varied by as much as an order of magnitude, for a given value of R. It would 
probably be best to solve the tracer dispersion problem with several different initial locations 
and then take an average. Alternatively, one could look at the worst mixing index out of the 
several chosen. The way of deciding this would have to be such so that the results would agree 
with practice. 

In conclusion, the following recommendations can be made. 
Regarding the numerical modelling of this type of problem, various extensions could be 

considered from the host of models already investigated using finite differences. These could 
include a finite length coil, a turbulence flow model and/or a free surface model. Concerning the 
mixing, it might be better to investigate it in terms of a mixing time, defined as the time taken 
for the mixing index to fall below a certain value, as opposed to comparing the mixing indices 
after a fixed time as was done here. The problem of where to locate the initial tracer concentration 
could also be investigated. 
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Regarding the practical implications of this work, it is clear that designers of such systems 
could use the rounding of the corner as a means of improving the mixing. The rounding of the 
corner has already been done because of the corrosion in the corner, but the amount of rounding 
could be chosen to optimize the mixing. In conjunction with this, designers could search for the 
optimum values of Rω and R for their particular application. 
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APPENDIX: VALUES OF STREAMFUNCTIONS ON GRAPHS 

Legend 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 

Streamfunction 
value 

-0.24 
-0.20 
-0.18 
-0.16 
-0.14 
-0.12 
-0.10 
-0.08 
-0.06 
-0.04 
-0.024 
-0.02 
-0.018 
-0.012 
-0.006 

Legend 

P 
Q 
R 
S 
T 
U 
V 
W X 
Y 
Z 
ZA 
ZB 
ZC 

Streamfunction 
value 

0.00 
0.006 
0.012 
0.018 
0.02 
0.024 
0.03 
0.04 
0.06 
0.08 
0.10 
0.12 
0.16 
0.20 


